
N93-15510

Proposal for Massively Parallel Data Storage System

M. Mansuripur, Optical Sciences Center, University of Arizona, Tucson, AZ 85721

V

ABSTRACT

An architecture for integrating large numbers of data storage units (drives) to form a

distributed mass storage system is proposed. The network of interconnected units consists of
nodes and links. At each node there resides a controller board, a data storage unit and,

possibly, a local/remote user-terminal. The links (twisted-pair wires, coax cables, or fiber-
optic channels) provide the communications backbone of the network. There is no central
controller for the system as a whole; all decisions regarding allocation of resources, routing of
messages and data-blocks, creation and distribution of redundant data-blocks throughout the
system (for protection against possible faih,es), frequency of backup operations, etc., are made
locally at individual nodes. The system can handle as many user-terminals as there are nodes in
the network. Various users compete for resour¢_ by sending their requests to the local
controller-board and receiving allocations of time and storage space. In principle, each user
can have access to the entire system, and all drives can be running in parallel to service the
requests of one or more users. The system is expandable up to a maximum number of nodes,
determined by the number of routing-buffers built into the controller boards. Additional
drives,, controller-boards, user-terminals, and links can be simply plugged into an existing

system in order to expand its capacity.

1. Background : The proliferation of computer networks in the near future is likely to create
a tremendous demand for large data storage systems capable of handling massive amounts of
information. In the foreseeable future, /"de-servers having capacities in the terabyte (1012)

range will serve a host of users whose demand for fast access and rapid data transfer rates can
be satisfied only with sustained data rates of several hundred megabytes per second. At the
present time, the use of high-capacity/high-data-rate storage devices may be confined to large
banks and insurance companies, airline reservation systems, military and aerospace
organizations, hospitals and certain medical facilities, major research and development centers,
and so forth. Nonetheless, these appfications represent a growing market for high-end data

storage products, with performance requirements that in many instances outpace advances in
the electronic storage technology.

Presently, three storage technologies dominate the mass-storage market. These are the
magnetic tape, magnetic hard disk, and optical disk technologies. Tape storage is used mainly
for backup and archival applications. Hard disks are predominant in high-density, fast access,
high data-ram environments. Optical disks are now beginning to emerge as serious contenders
for the same application area as has traditionally been assigned to magnetic disks; they also
show great promise for large volume, archival applications. Roughly speaking, there is room
for 1 GByte of storage on a 5.25" platter, and the achievable transfer rate to and from a disk
drive (assuming reasonable disk rotation speeds), _ in the range of 10 Mbit/sec (single
channel). These numbers may be over-estimates for magnetic disks and under-estimates for

optical disks; they are intended only as rough estimates here.
It is clear that in order to achieve high capacity and/or high data rate, small units of

magnetic/optical storage must somehow be integrated. One approach to integration calls for the
incorporation of multiple disks/heads within a single drive. This is certainly possible and, in
fact, it is a path that has been vigorously pursued for many years. One disadvantage of this
approach is the high cost and complexity of the resulting system. Also, since high performance

89
PRECEDING PAGE BLANK NOT FILMED

drives of thh type concentrate large quantities of data in one location, their failure can be
catastrophic. Another possible approach to integration involves networks of interconnected

storage units. Here several drives are placed on a single bus (or on multiple buses), and
controlled by an intelligent device driver. IBM Corporation's 3990 storage subsystem with a
maximum capacity of 181 GByte (and a price tag of approximately $2,500,000) exemplifies the
latter approach. Several other vendors offer integrated drives for the high-end storage market
u well. Noteworthy among available products are Digital Equipment Corporation's DECarray
SAg00 with up to 40 GByte of storage and 2000 I/O sec, and the system DS 323 from
Recognition Concepts, Inc. with 91 GByte of capacity at 72 MByte/sec data rate. These
systems are typically configured around a powerful central controller, use only a few d_k
drives, have limited expandability, are very expensive, and are highly specialized and directed
towards specific classes of applicatiom.

We propose a ma._ively parallel data storage system based on a network of distributed
drives and controllers. The system that we envision will have the following distinct features
and capabilities:

o Comtructed from small, inexpensive drives by large-scale system integration.

o Storage capacity ranging from a few GByte to several TByte.
o Data rate from a few MByte/sec up to several ten MBytes/sec.
o Number of independent users from one to several hundred.

o Expandable by adding plug-in modules.
o Reconfigurable by changing the network of interconnections.
o Immune to drive failures by adding redundancy to data and distributing blocks of data

among several drives.
o Designated drives for backup; automatic backup operations.
o Automatic disk-space management and defragmentation throughout the system.
o Open architecture; standard interface with the user.
o Inexpensive.

In the following sections we shall describe our approach to drive integration, discuss certain
im_rtant features of the distributed controller, and present preliminary results from a
computer simulation program that has been used to evaluate the system's performance.

2. Introduction: TEe present document _bes _ of interconnected data sto_sea system
units (such as magnetic-& ®fical-d_sWi_ne_n_Vbs, or a adXfi_,'ebVt_-m-). The sys_m allows
massive amounts of data to be stored in a distributed network of storage units, with apparent
data rates and access times which sue substantial im_vements over those a_b!e from the
individual drives. Multiple users can access the system independently of each other, and will
use the system by competing for resources. The architecture of the system has the geometry of
a hypercube or that of an extended hypercube, depending on the required data rates which
would be determined by the number of interconnectiom among the units. The backbone of the
system is its communication network, with individual connections being made either by
ordinary wires, or _ cables, or /_ber-0pfic finks. The control of the network is
distributed, with one controller board at each node of the (extended) hypercube. Each
controller manages the communication with the local user-terminal (if one is attached) and the

local drive. The controller also handles the arriving message/data blocks from adjacent nodes,
and determines the proper route for sending them towards their destination.

All controller boards within a network are identical in their basic design. A general-
purpose board can be designed to handle a number of different protocots for communication
with various types of storage devices and user terminals. Alternatively, separate boards may be

built for handling specific protocoh and device-interfaces. In any event, the differences among
the boards for different nodes are confined to their interfaces with the local storage unit and/or
the user-terminat; the routing mechanism remains the same for all boards. The boards are
configured for a maximum number of adjacent-node connections. For instance, if 10 is the

W

9O

maximumnumber of connections built into the boards, then hypercube networks designed
around these boards can have as few as 2 and as many as 2 zo = 1024 nodes. The system is thus

expandable, and can grow as the storage needs of the user increases. Details of the network's
architecture and the controller board design are described in the following section.

Security against failures of individual units (head crashes, chip burnouts, etc.) may be
provided by the addition of redundant blocks to the user data, and the distribution of these
blocks among several drives. For instance, if five blocks of user-data are added (modulo-2)
together to create a sixth block, and if these six blocks are stored on six differernt units, then
failure of a single unit will not affect the integrity of the data, since the missing block can
always be recovered by modulo-2 addition of the remaining five blocks. This is not a new
idea; in fact the storage system architecture known as Redundant Array of Independent Drives
(RAID) utilizes the same strategy for protection against drive failures. What is new here is that
no specific drive is designated for storing the redundant block, and the allocation of resources
involves a dynamic decision making process by the system itself. When a failure occurs, the
faulty device can be replaced without halting the entire system. Subsequently the lost data is

automatically reconstructed and stored on the new drive.
Another feature of the massively parallel data storage system is its ability to perform

backups in the background, without requiring intervention from the users or from the system
manager. Some of the nodes aredesignatedas backup nodes,and thesystem isprogrammed to

perform backups periodically,by storingthe contentsof allother drivesat thesedesignated

nodes. Intelligencecan be builtintothe system to perform backups with low priority,or to
considerpostponingsuch operationsattimeswhen the overallload/trafficwithinthe systemis

!i,, heavy.

V

3. Definition of terms and description of the building blocks of the system : This
section dermes some of the technical terms used in the present document, and describes the

building blocks of the massively parallel data storage system in detail.

Block of Data : A block of data is the minimum-size package of information that a storage

system can handle. For example, a block may consist of 512 bytes of user data plus overhead
(i.e., error control bits, synchronization bits, etc.). The users of the storage system submit their
data in blocks, the system stores a given block contiguously on a sector somewhere within the
system,and the block isreturuedin itsentiretyupon request.Error correction codingisused

to ensure the integrity of the block in the presence of noise. Modulation coding may be used
to tailor the block for storage on a specific device. Identification and synchronization bits may
be added to the block for later identification and retrieval. All these additional bits constitute
the overhead on the data. A block of user-data and its associated overhead are usually treated

as a single unit of data, and recorded on a single sector. Within the storage system, each block
is identified by a unique address. This address consists of two parts: The ID of the drive on

...... which the block is stored, and the ID of the sector within that drive allocated to the block. For
example, • system that stores up to l terabyte of data may have 1000 separate storage units
(drives), each one of which handles l gigabyte of data. Assuming that each block is equal to

one kilobyte, each drive ca,, store up to 10a blocks; each sector, therefore, is identified by a 20
bit addrem (2 m = 1,04g,$76). Since each drive needs at least 10 bits for its unique
identification (2 le = 1024), we see that a given block anywhere within this system is uniquely
identified by a 30-bit address. A user submitting a block to the system for storage must
receive this identifying address in return. All that the user needs to know about a block it
submits is this address, until such time as the block is needed for processing. At that point the
user will send the address to the system and request a retrieval. (Note: A data storage system
dedicated to a single user can manage the task of address allocation at the user level, since the
user always knows which sectors are available on various drives, where his stored data is
located within the system, and so forth. On the other hand, a multi-user system that wants to
keep the users independent of each other, must control the address allocation at a lower level.
For example, the user in such a system must first send a request for allocation of an empty

91

V

sector. The system then sends a message, informing the user of an available address.
Subsequently, the user sends its block of data for storage in that particular address, and keeps
the address for future reference.)

Storage Unit (Drive) : This is a device capable of communicating via a well-defined protocol
with its environment. The device must be able to accept blocks of data from a host and store
that data internally. It must also be capable of delivering the stored blocks to the host upon
request. The internal mechanism of storage is irrelevant as far as the outside world is

concerned. The data might be stored on one or more magnetic disks,opticaldisks,
magnetic/opticaltapes,semiconductormemory chips,etc.The drivesendsmessagesto itshost,

informing the hostof itsstatus.The busy message means thatthe driveisnot availablefor

new requests.This occurs,for instance,when the drive searchesfor a previouslyrequested

block of data in the read mode, or when ittriesto recordor erasea sector.The ready-to-

transmitmessage means thatthe drivehas found a previouslyrequestedblock and isnow ready
tosubmit ittothe host,There must be a tableof contentsforthedrivethatthe hostcan access

and modify. It is through thistablethat the host knows which sectorson the drive are

available,what blocksarerecordedon which sectors,and so forth.

Hypercube : This is a special geometry for connecting a number of devices. The simplest
hypercube is a one-dimensional cube (n = 1), which has two nodes connected by a single edge
(see Fig. l(a)). The next hypercube has dimension n = 2, consists of 2'* = 4 nodes, and each
node is connected to two neighboring nodes via two edges, as shown in Fig. l(b). The three
dimensional cube is the ordinary cube with n = 3, has 2a = 8 nodes, and each node is connected
to three other nodes via three edges. To construct an n + 1 dimensional cube, therefore, one
must connect the corresponding nodes of two n-dimensional cubes via 2• new edges. For
example, Fig. l(d) shows how a 4-dimensional cube may be constructed by connecting the
eight nodes of two ordinary (i.e., 3d) cubes. In this way it is easy, for instance, to see that a
10=d cube consists of 2 x° - 1024 nodes, each node is connected directly to 10 neighboring
nodes via 10 edges, and, in order to go from any node to any other node of the hypercube, one
needs to go over at most 10 edges. In the architecture set forth in this document we shall
connect data storage devices in the hypercube geometry (or an extension of the hypercube
geometry to be described in the next paragraph). Thus individual drives are at the nodes of the
hypercube, and the backbone of the communication network that connects these drives is
formed by wires (i.e., twisted pairs, coax cables, fiber-optic links, etc.) that can be imagined as
the edges of the hypercube. Of course we do not have access to a physical higher dimensional
space than n - 3, so that the angles at the corners Of our hypercubes are not 90 ° angles, but this
is not a matter of concern, m all we are interbred in is the number of connections between
the nodes and the order in which these connections are made.

Extended Hypercubo : In certain applications it might be desirable to increase the number of
connections at each node, i.e., to have more adjacent nodes (as compared to the hypercube) for
each node. In such cases we shall use simple extensions of the hypercube. In principle, an
arbitrarily larlle number of conn_ns per node can be achieved, provided that one is willing
to use the required number of wires. In Fig. 2 we have depict, by way of example, the
geometry o/" an extended hypercube. Upon close examination of the strategy employed in
Fig. 2 and comparison with Fig. 1, it should be trivial to create further extensions of the
hypercube containing even more connections per node.

In Fig. 2(a) we have the smallest unit of an architecture with 4 nodes and 3 connections to
each node. In Fig. 2(b) the basic unit is replicated 4 times, and each node is connected to 3
similar nodes. We now have a total of 16 nodes with each node connected directly to 6 other

nodes. (Remember that the hypercube of dimension 4 which also has 16 nodes, has only 4
connections per node.) To go to the next step we can take the structure in Fig. 2(b), replicate it
four times, and connect each one of the resulting nodes to their three counterparts. We will
then have a total of 64 nodes, with each node directly connected to 9 other nodes (that is three

connections more than afforded by a 6-d hypercube which has the same number of nodes). In

W

O2

like manner,the procedurecanbeextendedto structureswith 4n nodes and 3n connections at
each node.

Link : Each edge of the hypercube is a "link" in the actual system. A rink is a bi-directional
communication channel between two adjacent nodes of the network. Links may be simple

twisted-pair wires, coaxial cables, or fiber-optic channels. An n-dimensional hypercube will
have a total of n2s-I finks. A message/data block created at one node and addressed to another
node, must travel through one or more links before it arrives at its destination. Typically, a
message�data block arrives at a node, waits for a link to an appropriate adjacent node to
become available, and then travels to that node; the process continues until the block arrives at
its destination. Assuming that traffic jams do not force the controller to re-route, each
message/data block traverses at most n links in an n-dimensional hypercube. For instance, in a
10-d hypercube architecture which has 1024 nodes, travelling blocks need at most 10 hops to
reach their destination. Most blocks, however, travel a shorter distance than the above
maximum, since they do not travel between extreme opixnite comers of the cube. Since an
extended hypercube will have more links than an ordinary hypercube with the same number of
nodes, communication within the extended cube is faster and more efficient.

Buffer : There are several buffers on each controller board. A buffer is an electronic storage
device, such as a shift register, used as temporary storage for commands and data blocks
between origination and destination points. A buffer can store one block of user data plus

• additional infoL_nation such _ a command, one or more command qualifiers, flags, and
command-reLated addresses. Figure 3 shows a typical structure of one such buffer. Within a
board, buffers can exchange their contents with one another, transfer the contents to the local
storage device, send/receive command and data from the local user-terminal, and transfer
contents to another controller board (located at an adjacent node) via the links. The buffers do
not make these decisions themselves; the control logic reads the command section of each

obu(fer and initiates the _ tranfer(s). The buffers may have multiple Layers of depth, as
shown in Fig. 4. When traffic congestions occur on the board, or when the buffer needs to
wait for unloading its contents (and this may happen for a variety of reasons), the control logic
pushes the contents one level down and clears the way for the next transaction. All previous
commands in this case wait "below the surface" until congestion problems are resolved.

Controller Board" At _h node of _e (extended) hypercube there resides a controller board.
A block diagram illustrating a possible configuration of this board is shown in Fig. 5. A
storage unit (drive) communicates with the controller through the drive buffer (d-buffer for
short). Similarly, the//O-buffer handles traffic in and out of the user-terminal, The d-buffer
is used to store command/data on the way to the storage device, or on the way out of the
storage device and to a specific node. It may happen that a given node is not selected as a

user-W .rmJnal node, _ which _ the_flags within the I/O-buffer are properly set to indicate
this fact to the control logic; the control logic then ignores the//O buffer.

Routing buffers (r-buffers) receive command/data iterm from adjacent nodes via the links,
or directly from other buffers within the same node. The number of r-buffers on each board
is equal to the number of adjacent nodes for the l_u-ticuLar architecture under consideration.
For example, an n-cube architecture requires n routing buffers per board. When the contents
of an r-buffer are addressed to the current node, the controller extracts them and places them

' _either in the d-buffe-r _orin_ UO-bu_r. _n the contents of anr-buffer_e addressed to

another node, the controller searches for the best route to direct the item, then transfers it to
the proper adjacent node. The routing decisions are made locally at each node, based on the
destination address, availability of adjacent-node buffers, and whatever local information may
be available to each controller. The cross-bar switch allows any buffer to be connected to any

link, connects r-buffers to d-buffer and//O-buffer, and allows d-buffer and l/O-buffer to
exchange their contents. The state of the cross-bar switch is determined by the control logic

which is the CPU of the controller board. The control logic reads the command segment of
each buffer, identifies the best route for the contents of that buffer, and programs the cross-

93

barswitchfor thenecessaryconnections.
The diagram in Fig. 5 also shows a connection between the control logic and a unit called

the status table. This status table keeps useful information about the state of other nodes within

the system. For instance, a drive upon becoming engaged/released by a user-terminal can send
a message to all nodes, informing them of its new status. Each node then updates the status of
that particular drive and keep the information in the status table, thus allowing the control logic
to draw on this information for making allocation decisions.

4. Advantage, : The massively parallel data storage system described in this document has
several advantages over the existing mass storage devices. Some of the advantages of this

system are briefly described in the following paragraphs.

i) The system is built from small units (drives) that are produced in large quantity for the
personal computer market. These units are cheap, reliable, and are available from a number of
different manufacturers. It is therefore possible to reduce the overall cost of the system and

maintain the flexibility to respond to new technological developments. _'

ii) The system can be expanded by adding new storage units/links to the old ones. Thus when
one's need for storage capacity/transfer rate increases, one can upgrade an existing system and
pay only the cost of additional units. In the case of hypercube architecture, for example, if the
controller boards were designed to handle lO adjacent nodes, then the upper limit to the
number of units would be 1024, if the boards were designed for I l adjacent nodes the upper
limit would be 2048, and so on. One might also choose to recoufignre a system without adding
new drives, but by changing the architecture to an extended hypercube which has more links
per node. For example, a 4-d hypercube with 16 drives and 4 links per node (total number of
links - 32) can be recoufignred to the architecture shown in Fig. 2(b) which has the same
number of drives but, with 6 links per node, requires 16 additional links. The new
configuration will now have an increased data rate, since its nodes have more connections to
the rest of the system.

iii) The massively parallel data storage system can handle u many independent user-terminals
as there are nodes in the system. Each user has access to the entire system, and interacts with
the system as though there were no other users. Of course the presence of many users on the
network will affect the response-time and the traffic load, but it does not modify the logical
modes of interaction between the user and the system. _

iv) By adding redundancy to the data and distributing the blocks of data among various drives,
the performance of the massively parallel data storage system becomes immune to failures.
Thus when a storage unit fails, the system proceeds to reconstruct the lost data from the
remaining blocks. In the meantime, the failed device may be replaced without having to shut
down the entire system Once the new drive is up and running, the system automatically

v) The system Perfo_ automatic backups during periods in which _f net_,0rks !oac!_h light.
One or more nodes may be assigned to backup drives (such as tape drives), and the sDtem
instructed to transfer the contents of other units to the backup units during appropriate time

intervals. No action on the part of the user(s) is therefore required for safe-keeping of the
data.

5. Computer Simulation : A highly simplified_versi-on of the hypercube-configured,

massively parallel data storage system was simulated (in FORTRAN) on a VAX-Station. The
purpose of the simulation was to demonstrate the feasibility of the concept, and aiso to
investigate the performance of various routing and communication algorithms. Since the

94

simulatedsystemincorporatessome of the essentialfeaturesof theproposedsystem,thissection

is devoted to a brief descriptionof certainfeaturesof the simulation. The following

terminologyhas been usedin developingthesimulationprogram.

ID:.

NODES:
CNODE:
DNODE:
GNODE:
SFLG:

Number of dimensions of the hypercube (IDm_ = 16)
Number of nodes in the network (NODES = 2lu)
Current node address (16-bit format)
Destination node address (16-bit format)
Origination node address (16-bit format)

Status-flag, a logical array with as many elements as there are nodes. Each node
keeps a copy of SFLG which is continually updated throughout the system to reflect
the most recent state of the drives. SFLG(n) ,, true/false depending on whether or

not the drive at node n is being used by some other node.

Input/Output Buffer : Within each I/O-buffer two flags and six segments are utilized for
command, DNODE/GNODE address, begin/end addresses for data-blocks, and the data-block
itself.
IOFLGh
IOFLG2:
IOFLG3:
IOBFRh
IOBFR2:
IOBFR3:
IOBFR4:
IOBFRS:
IOBFR&
IOBFRT:
IOBFR8:

When this flag is false, buffer needs attention from the user-terminal.
When this flag is false, buffer needs attention from the controller
(not used)
DNODE or GNODE address, depending on the type of command
(not used)
(not used)
Command

Command-parameter
Begin address of the block
End address of the block
One data-block sent either from user-terminal for storage, or from a drive for pickup

by the terminal

Drive Buffer : Within each d-buffer three flags and five segments are utilized for command,
DNODE/GNODE address, begin/end addresses for data-blocks, and the data-block itself.
DFLG 1: When this flag is false, buffer needs attention from the drive.
DFLG2: When this flag is false, buffer needs attention from the controller.
DFLG3: This flag becomes false upon reservation; it becomes true again when released by the

node that made the reservation. When reserved, only commands arriving in r-buffers
with the correct DNODE address are accepted. Whenever the status of DFLG3

changes,thecorrespondingSFLAG isresetthroughoutthesystem.
DBFRh DNODE or GNODE address,dependingon the typeof command

DBFR2: (notused)

DBFR3: (not used)
DBFR4: Command

DBFRS: (not used)
DBFR6: Begin address of data-block
DBFRT: End address of data-block
DBFRg: Data-block

Routing Buffers : Each node has a number of r-buffers equal to ID, one for each link
attached to the node. Each buffer can accept one command/data-item from its input link, or
from a local r-buffer, d-buffer,//O-buffer, or x-buffer. The contents of a buffer may be
transferred to another node via the corresponding link and r=buffer, or they may be shipped to
the local d-buffer or to the local UO-buffer. The r-buffers utilize one flag and eight
segments, as follows.
RFLGh When this flag is true, r-buffer is empty in which case it can receive a

command/data-item. When false, the buffer must be attended to by the control logic.

95

RFLG2:
RFLG3:
RBFRI:
RBFR.2:
RBFR3:

RBFR4:
RBFR5:
RBFR6:
RBFR7:
RBFRS:

(not used)
(not used)

DNODE address for the command (16-bit binary format)
GNODE address for the command (16-bit binary format)
Counter. If 0, command does not propagate, otherwise, it is shipped to the adjacent
r-buffer, with the corresponding bit of its DNODE address toggled and its counter
decremented by 1.
Command

Command-i_rameter
Begin address of data-block
End-address of data-block
Data=block

Auxiliary Buffers : Each buffer in the controller-board has its own x-buffer corresponding
to depth level #1 (see Fig. 4). When traffic congestions make it impossible for a buffer to ship
its contents to the proper address, the contents are automatically pushed to the x-buffer
immediately below for temporary storage. The x-buffer pops back up whenever its parent
buffer becomes available again.
XFLGI: When this flag is false, x-buffer is occupied in which case it needs attention from the

control logic.
XFLG2: (not used)
XFLG3: (not used)

Cache : The cache memory residing in each controller-bcard receives data-blocks from local
user-terminal and stores them at the address indicated by BPNTR. Blocks move out
sequentially from the address indicated by TPNTR. Cache is empty when BPNTR = TPNTR.
NMA_ Maximum number of blockscachecan store.

TPNTR: Pointer to the top of the occupied block within the cache.
BPNTR: Pointer to the bottom of the occupied block within the cache.
CFLG: When this fla8 is false, cache is full.

Internal system commands : The following commands were used in the computer simulation.
This is a minimum command set required for basic muting and data transfer procedures.
F. Set at each and every node the status-flag of the drive at CNODE. SFLG(n) indicates

whether or not the drive at node n accepts read/write/erase requests (when accepting,
SFLG(n) = True).

H. Hold drive at DNODE on behalf of GNODE.

P. Reporting the status of drive in response to a H-request. Informs GNODE whether or not
d-buffer at DNODE is available. If available, it also delivers an assigned address for the
data-block.

L. Release drive at DNODE from an earlier hold made by GNODE.
S. Deliver din-block for storage at DNODE.
E. Erase data-blocks (address ,, begin : end) from drive at DNODE.
R. Retrieve data-blocks (address = begin : end) from drive at DNODE.
O. Transfm' data-block to//O-buffer at DNODE.

Results of simulations : Simulations were performed for hypercube networks of disk drives
with varying dimensions. In each case, the number of users was varied in order to study the
effect of overall load on the level of interaction between the system and individual users.
Users were given equal priority, and were allowed to issue random requests for READ and
WRFFE operations. The WR.ITE commands were preceded by requests for drive allocation,
without specifying the drive. The controller then tried to assign the local drive to the task,
except when that drive was busy, in which case it selected another (free) drive. Su_uently
the data-block was shipped to the reserved drive for storage. In case of a READ command,
the user=terminal first made a request for reservation from the drive that contained the desired

96

blockof data. If the request was granted, the drive would be asked to read a 5-sector block
and forward it to the terminal that had issued the request. When a reqnest for reservation was
denied, the user-terminalsimply abandoned the request. The simulationprogram was

incapableof _imittingconcurrencyof operationamong the variousnodes,leavingus with no
optionbut to scan the nodes sequentially.The resultsobtainedby simulation,therefore,are

worst=casescenari_ and do not reflectthe truelevelof parallelisminherentin the system.

Despite this and severalother shortcomings of the simulationprogram, the resultsare

impressiveand indicatethatsignificantgainscan be expectedfrom a massivelyparalleldata

storagesystem.
The unit of time T in these simulations is taken as the time needed to transfer the contents

of one buffer over a single link (i.e., transfer between adjacent nodes). Each disk operation
(sector-read or sector-write) is assumed to take 20T. Table I lists the total number of
completed read/write operations in several simulations that were performed over a time interval
of 500T. Notice that a single drive, working incessantly to perform sector read/write jobs,
would complete only 25 such operations during the same period of time. There was no cache
memory on the simulated boards, and the buffers had only one level of depth. When traffic
jams occurred, the program was aborted and the simulation repeated with a reduced frequency
of read/write requests on behalf of each user.

The simulation results in Table I indicate a significant level of drive activity within the

system. For instance, the hypercube storage device with 16 drives and 4 users performs 371
read/write operations during the period under consideration, i.e., the equivalent of 15 fuU=time
drives. Or consider the system with 64 nodes and 12 users, which delivers the performance of
30 full=time drives. Even ignoring the fact that the simulation under-estimates the power of
the system, and also the fact that the users in these simulations make frequent requests for

fairly short operations, the performance figures are still very impressive.

Table L Simulatedperformanceresultsfor hypercube mass=storagesystems. When more than

one userispresent,the usersaregivenequalpriority,and allowedtomake random requestsfor

READ and WRITE operationsfrom the system. No attempthas been made to optimizethe

performance or to break trafficjams. The results shown are simply examples of sustained

operationover a long time interval.(For comparison, note that a singledrive running

incessantlyduringthe same periodwould perform 25 such operations.)

Nodes Users Requests Operations
issued/granted read/write

16 1 144/099 255/48
16 4 217/115 320/51
64 1 149/116 270/62
64 7 255/213 505/112
64 12 290/236 630/110
12g I 118/I10 250/60
128 10 374/272 730/126

97

Figure Captions

Fig. 1 shows n-dimensional cubes with n ,, 1, 2, 3 and 4. A cube of dimension, > 3 is often
referred to as a hypercube. An n-dimensional cube will have 2" nodes and n2"-x edges.

Fig. 2 shows the principle of construction of an extended hypercube network. The lowest-
dimensionalstructureof thistype shown in (a) has 4 nodes, where each node is directly

connectedto 3 othernodes. The next higher-dimensionalstructureshown in(b)consistsof 16
nodes, where each node is directly connected to 6 other nodes.

Fig. 3 _-the biock _ of a _cai buffer feaster. Several such registers are used as

temporary storase units within each controller board. A buffer register is essentially a shift
register which is loaded and unloaded electronically, either serially, or in parallel, or in a mixed
mode. The control ingic reads the "command & contror section of the register to decide what
task(s) to perform and/or which route to send the block along. The "data" section of the
register contains one block of user-data (typically 512 or 1024 bytes) which is on its way to be
stored on a drive or to be retrieved by a user-terminal.

Fig. 4 shows a buffer register with multiple depth layers. At times of congestion, contents of
the entire register are pushed one level down in order to free the main register (top) for
continued operation. When the congestion condition disappears, contents of the register are
pushed up (layer by layer) until all levels are cleared up.

Fig. 5 shows st block diagram of the controller board whose responsibility is the control of

operations at each node of the system. To each node is attached a storage unit and, possibly, a
user-terminal, both communicating with their respective buffers. The n muting buffers are
associated with, adjacent nodes of the system. The control logic has access to the "command
& control" section of each buffer, and makes all the decisions regarding transfer of data both
within and without the board. The bidirectional croa-bar switch, which is capable of
connecting any buffer to any other buffer or to any link, receives its commands from the
control logic. The status table keeps track of the state of various nodes in the system; its
contents are updated frequently by status messages that circulate through the network.

98

(a)
node

/
A

v

/
A

w

node
(n=l)

(b)

node

edge (n=2)

(c)

(d)

edge

node

edge

edge node

(n=3)

(n=4)

Illusnilon by Vamer
99 Mansuripur / Opt sa rig 1

node

(a)
edge

(b)

\
\

100
Ilusllmlonby Vtimer
MImSUdlOUr/ Opt sa fig 2

juB =°°

lockof User-Data

.==

BufferRegister

DestinationI OriginationI, Flags-&- 1CommandjAddress Address Parameter(s)J

Command& Control

101 Ilusb'liton byVerner
k_u_ / Opt r,a fig 3

Electronic
circuitryfor

parallel
transfer

between
identical
buffers

_k

_V

BufferRegister

_V _v _v

DepthLevelNo.I

DepthLevelNo.2

_v _v _V

DepthLevelNo.3

_k

_V

_k

_v

Illus_'lJton by Vamef
102 M,_'tsutipur ! Opt sO fig 4

r_
V

Storage
Unit

User-
Terminal

DriveBuffer

RoutingBufferNo.1

RoutingBufferNo.2

RoutingBufferNo.3

RoutingBufferNo.n

,

I

I/0- Buffer

Status
Table

i

'IF

¢J')

¢:Q
C/'J
C/)
C)

r,.3

¢D

LinkNo.1

LinkNo.2

LinkNo.3

qH_ LinkNo.n

Control
Logic

103
Illu=lra/ton by Vamer
IVl=n=uripur / Opt so fig 5

APPENDIX F

105

PRECEDING PAGE i_LANK NO'/" FiL._,_,_D

